Exactly Conservative Integrators

نویسندگان

  • Bradley A. Shadwick
  • John C. Bowman
  • P. J. Morrison
چکیده

Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of any nonlinear invariants. In this work we present a general approach for developing explicit nontraditional algorithms that conserve such invariants exactly. We illustrate the method by applying it to the three-wave truncation of the Euler equations, the Lotka–Volterra predator–prey model, and the Kepler problem. The ideas are discussed in the context of symplectic (phase-space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Exactly Conservative Integrators

Traditional explicit numerical discretizations of conservative systems generically predict arti cial secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the time step. We discuss a general approach for developing explicit algorithms that conserve such invariants exactly. We illustrate the method by applying it to the truncated two-dimensional Euler equa...

متن کامل

Mass conservative, positive definite integrator for atmospheric chemical dynamics

Air quality models compute the transformation of species in the atmosphere undergoing chemical and physical changes. The numerical algorithms used to predict these transformations should obey mass conservation and positive definiteness properties. Among all physical phenomena, the chemical kinetics solver provides the greatest challenge to attain these two properties. In general, most chemical ...

متن کامل

Symplectic-energy-momentum preserving variational integrators

The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given. ©...

متن کامل

Speeding up HMC with better integrators

We discuss how dynamical fermion computations may be made yet cheaper by using symplectic integrators that conserve energy much more accurately without increasing the integration step size. We first explain why symplectic integrators exactly conserve a “shadow” Hamiltonian close to the desired one, and how this Hamiltonian may be computed in terms of Poisson brackets. We then discuss how classi...

متن کامل

Linear energy-preserving integrators for Poisson systems

For Hamiltonian systems with non-canonical structure matrix a new class of numerical integrators is proposed. The methods exactly preserve energy, are invariant with respect to linear transformations, and have arbitrarily high order. Those of optimal order also preserve quadratic Casimir functions. The discussion of the order is based on an interpretation as partitioned Runge–Kutta method with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 59  شماره 

صفحات  -

تاریخ انتشار 1998